A Comparison of Lymphocytes from Adult Peripheral Blood versus Umbilical Cord Blood

With the rapid advancement of cell therapies, there is a demand for cellular starting materials that are robust, reproducible, well-characterized, and clinically relevant. Many adoptive cell therapies are based on lymphocytes and hematopoietic stem cells. Whether it’s allogeneic CAR-T or hematopoietic stem cell transplantation (HSCT), clinical development and commercial scale up and scale out require a high quantity of high quality cells as starting materials.

Cord blood (CB) HSCT has been around for over 30 years. It has been shown to have practical, biological, and clinical benefits compared to bone marrow. In contrast to other allogeneic cell sources, CB is readily available as frozen, “off the shelf” product. Additionally, search time for CB is reduced compared to unrelated bone marrow or peripheral blood donors (search time for unrelated CB is ~12 days and bone marrow ~3–4 months).1 CB also requires less stringent HLA matching and results in lower incidence of graft-versus-host disease (GVHD). These characteristics have made CB more accessible. Over the years, the use of CB-derived cells has resulted in a significant positive impact on treatment outcomes.

As opposed to bone marrow and peripheral blood, most lymphocytes in CB are immature and naïve, antigen-inexperienced cells. T cells in CB have a higher capacity to be transformed into memory T cells and have been shown to be an excellent source for genetically modified T cells.2,3,6 CB-derived T cells also exhibit enhanced anti-tumor activity with a high tumor-infiltrating CD8/Regulatory T cells (Tregs) ratio, compared to adult peripheral blood T cells.4 CB-derived virus-specific T cells were shown to be safely and effectively administered to HSCT recipients in order to prevent and treat viral reactivation.5 The unique γδ T cell subset can also be found in cord blood. These “innate-like” T cells have anti-viral and anti-tumor activities in major histocompatibility complex (MHC)-independent context.7 CB is also a rich source of a unique, immature Natural Killer (NK) cell population that can mature into potent NK cells with high proliferation and cytotoxicity capacities which lead to an impressive graft-versus-leukemia activity.8 CB-derived NK cells can be expanded >1000-fold and reliably produced for clinical use, such as for manufacturing of CAR-NK.9

Figure 2 The difference in composition of lymphocytes in cord blood compared to peripheral blood (Image from Yun HD, Varma A, Hussain MJ, Nathan S, Brunstein C. Clinical Relevance of Immunobiology in Umbilical Cord Blood Transplantation. J Clin Med. 2019;8(11):1968.)

Despite the numerous benefits to utilizing CB-derived lymphocytes as starting material for cell therapies, there are some challenges. One of the biggest challenges that researchers encounter with using CB-derived cells is cell number.10 In order to develop, manufacture, and dose patients with cellular-based treatments, the average cell number from a single cord blood unit is not sufficient. It is often necessary to use two units of cord blood, which becomes very expensive (estimated ~$80,000). CB units are also kept frozen for years before use, and this results in a lower viable cell yield upon thawing. Therefore, many researchers are required to spend time and resources on ex-vivo expansion of cells derived from CB, which is not always cost-efficient, and can also prolong time to therapy deployment to patients.

Due to the challenges around use of CB-derived lymphocytes, some scientists prefer to use adult peripheral blood (i.e., circulating whole blood) as a starting material. There are clinical benefits to adult-derived lymphocytes compared to CB-derived lymphocytes. As opposed to the delay in CB engraftment and immune reconstitution, recipients of peripheral blood transplantation experience normal recovery rates. Studies have shown that hematopoietic recovery after peripheral blood stem cell transplantation is also faster compared to CB HSCT.11 The ability to reconstitute the immune system in a timely manner has implications which include decreased risk of infections in the recipient, lower morbidity and mortality, as well as improved treatment outcome and efficacy.12

No matter what your preferred source of raw material is, to successfully develop cell and gene therapies, it is important to have a steady and reliable source of high quality starting materials. At OrganaBio, we address this mission-critical industry need by isolating, characterizing and providing a variety of exceptional cell products to cell therapy developers. We also understand the benefits of having ready access to a variety of tissues and cell sources on basic science, R&D, cell therapy preclinical development and testing, and manufacturing. Hence, we are consistently broadening our portfolio of products to best serve the industry and meet unmet needs.

You can learn more about our products here.  You can also sign up to receive alerts on new product launches and industry news by interacting with us in the chat box below.

 

References:

  1. Confer D, Robinett P. The US National Marrow Donor Program role in unrelated donor hematopoietic cell transplantation. Bone Marrow Transplant. 2008 Aug;42 Suppl 1:S3-S5. doi: 10.1038/bmt.2008.102.
  2. Ma Q, Garber HR, Lu S, et al. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy. 2016;18(8):985–994. doi:10.1016/j.jcyt.2016.05.001
  3. Lo Presti V, Nierkens S, Boelens JJ, van Til NP. Use of cord blood derived T-cells in cancer immunotherapy: milestones achieved and future perspectives. Expert Rev Hematol. 2018;11(3):209–218. doi:10.1080/17474086.2018.1431119
  4. Hiwarkar P, Qasim W, Ricciardelli I, et al. Cord blood T cells mediate enhanced antitumor effects compared with adult peripheral blood T cells. Blood. 2015;126(26):2882–2891. doi:10.1182/blood-2015-06-654780
  5. Abraham AA, John TD, Keller MD, et al. Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients [published correction appears in Blood Adv. 2019 Aug 27;3(16):2453]. Blood Adv. 2019;3(14):2057–2068. doi:10.1182/bloodadvances.2019000201
  6. Yun HD, Varma A, Hussain MJ, Nathan S, Brunstein C. Clinical Relevance of Immunobiology in Umbilical Cord Blood Transplantation. J Clin Med. 2019;8(11):1968. Published 2019 Nov 14. doi:10.3390/jcm8111968
  7. Berglund S, Gaballa A, et al. “Expansion of Gammadelta T Cells from Cord Blood: A Therapeutical Possibility.” Stem Cells Int. 2018 Mar 7;2018:8529104. doi: 10.1155/2018/8529104.
  8. Mehta RS, Rezvani K, Olson A, et al. Novel Techniques for Ex Vivo Expansion of Cord Blood: Clinical Trials. Front Med (Lausanne). 2015;2:89. Published 2015 Dec 11. doi:10.3389/fmed.2015.00089
  9. Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N Engl J Med. 2020;382(6):545–553. doi:10.1056/NEJMoa1910607
  10. Barker JN, Kempenich J, Kurtzberg J, et al. CD34+ cell content of 126 341 cord blood units in the US inventory: implications for transplantation and banking. Blood Adv. 2019;3(8):1267-1271. doi:10.1182/bloodadvances.2018029157
  11. Brunstein CG, Gutman JA, Weisdorf DJ et al. Allogeneic hematopoetic cell transplantation for hematologic malignancy: Relative risks and benefits of double umbilical cord blood. Blood 2010;116:4693–4699
  12. Takagi, S., Ogura, S., Araoka, H. et al. The impact of graft cell source on bloodstream infection in the first 100 days after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant (2021).

Andrew Larson

Managing Director, CPC Services

Andrew joins OrganaBio as a project manager with varied experience in project management, client relations, and process improvement.

Prior to OrganaBio, Andrew was a client relations manager for the cGMP nucleic acids business unit at Aldevron, coordinating and managing contracts at each stage of the contract lifecycle in support of cell and gene therapy program development. Andrew supported small- and large-scale biotechnology and pharmaceutical clients anywhere from pre-IND work through commercial supply chain establishment. Before Aldevron, Andrew was a project manager for the commercialization and business development department for Sanford Health, a worldwide hospital institution. At Sanford Health, Andrew helped manage medical device patent and prototype development efforts for employee innovations primarily in the cardiovascular, neurovascular, and software spaces. Andrew was also an engineer for Atirix Medical Systems and supported the buildout of automated analysis worksheets to streamline radiology department quality control procedures.

Andrew received his Bachelor of Science in Physics from Minnesota State University Moorhead and his Master of Science in Biomedical Engineering from the University of Minnesota. At the University of Minnesota, Andrew was part of the Center for Magnetic Resonance Research, assisting efforts to automate MRI dataset registration and workflow improvement.

Michael Dee

Associate Director, QC and Analytical Development

Michael Dee has spent the last 17 years researching the immune system. Initially studying the recombinant cytokine IL-2 and its role in T cell subset differentiation and function at the University of Miami. He also helped elucidate the lower level of TCR diversity of T regs required to prevent autoimmunity in mice. Michael also supported construction, cloning, production, purification, and testing both in vitro and in vivo a novel IL-2/IL2Rα complex currently under clinical development with BMS. Michael also was a member of the department of immunology’s program project delineating the effect of a novel Eg7GP96 heat shock protein vaccine on tumor immunity.

While at Immunity Bio (formerly Altor Biosciences), he helped to characterize over 20 novel drugs for immune modulation and treatment of cancer.  After Immunity Bio, Michael was a founding team member of HCW Biologics, where he continued his role in design and initial production and characterization of several novel biologics. He has experience with proof of principle experiments with the generation CAR-NK and CAR T cells. His research at HCW was highlighted by his discovery of a process using novel biologics to activate and expand CIML NK cells. The process and rights were sold to Wugen and is currently in Phase I clinical trials. He also is listed as an Inventor on patent number: US20210268022A1 on method of activating regulatory T cells.

Meram Alamoudi

Senior Cell Processing Specialist

Meram received her master’s degree in biomedical sciences from Barry University and bachelor’s in Biology from Palm Beach Atlantic University.

Before her position at OrganaBio, Meram conducted research at Larkin University where she worked on assessing the impact of Hurricane Maria on respiratory diseases in Puerto Rico, which provided her with insight into research investigation and analysis along with generation of grant documentation.

Valeria Beckhoff-Ferrero

Senior Bioprocess Scientist

Valeria Beckhoff Ferrero has over 5 years of experience in the fields of stem cell research and tissue engineering. Valeria received her Bachelor of Science in Biomedical Engineering, specializing in Biomaterials and Tissue Engineering, from Drexel University in Philadelphia. Valeria has expertise in problem solving and finding manufacturing solutions for isolating various types stem cells and other cell derived products from different tissues.

Before joining OrganaBio, Valeria was a lead manufacturing engineer at the Amnion Foundation. She aided in instituting a GMP infrastructure, including documentation, to manufacture clinical grade placental derived stem cells. In her role, she worked in perfecting isolation, culture, selection and cell maintenance processes for perinatal derived stem cells.

Valeria’s experience includes working as an Automation Engineer at the New York Stem Cell Foundation, where she aided in the creation and coding procedures for liquid handlers to manufacture induced pluripotent stem cells. At NYSF, Valeria researched new methods of sorting, reprogramming and differentiating iPSCs.

During her studies, Valeria worked at Thomas Jefferson University Hospital’s Radiation Oncology department, where she engineered various devices to aid in hyperthermia treatments. Additionally, Valeria co-authored multiple publications on magnetic resonance guided focused ultrasound and radiation antennas for hyperthermia treatments.

Marisa Reinoso

Director, Regional Scientific Sales

Marisa has experience leading marketing and sales life sciences programs for over a decade. Originally a lab researcher, she made the jump to marketing & sales in life sciences and never looked back.

At OrganaBio, she connects cell therapy developers on the West coast and in Asia with the healthy donor starting materials they need to develop their therapies. Prior to OrganaBio, she was the cell therapy marketing lead at Invetech, heading the launch of the company’s first cell therapy product. Marisa has led marketing programs at clinical supply companies Sherpa Clinical Packaging and PCI Pharma Services. In her spare time, Marisa enjoys traveling, eating, and pretending she’s a tennis player. She has a Bachelor of Arts in Biology from Reed College and an MBA from Portland State University.

Thelma Cela

Senior Director, Tissue Procurement

Thelma Cela is a top performing professional with over 25 years’ experience in management, leadership, business development and marketing fields with business acumen and skills in driving revenue and profit growth in multiple corporate cultures. Prior to joining OrganaBio, Thelma served as Senior Director for Health and Human Services for the Seminole Tribe of Florida. Her role had oversight for health clinics, health plan administration, the behavioral health department, and elder services. In this governmental administrative capacity, Thelma had primarily responsibility for the HHS’ divisions’ budget, capital projects, utilization management, efficiency, and efficacy.

Thelma’s prior work experiences include Vice President of Clinical Operations for OrthoNOW. In this role, she provided guidance on all clinical matters, set direction on clinical policies and procedures and monitoring healthcare policy changes. As the national Vice President of Clinical Operations, Thelma also designed, developed, and implemented guidelines and protocols and ensured compliance regarding overall patient experience.

Before joining OrthoNOW, Thelma had been recruited by Leon Medical Centers, a private healthcare company operating comprehensive medical centers to launch a new business line addressing the health and wellness of an aging population. As Director, Thelma researched, created, and launched the company’s Health Living Centers which provided first of its kind facilities in the South Florida market to offer services to the community of health aging.

Thelma has a proven track record in multiple corporate healthcare cultures having worked for Mercy Hospital where she was Senior Program Director of their Diabetes Treatment Center and Director of their Surgical Weight Loss Program. She enhanced these service lines awareness in the community, improved both lines’ clinical outcomes, and built volume growth while maintaining ongoing physician support. She served in a similar capacity for American Healthways.

Thelma earned her MBA from Miami Regional University where she graduated Cum Laude and her undergraduate degree in Psychology is from the University of Miami.

She serves on the advisory panel for Florida International University’s Women in Business Leadership Program helping future women become future business leaders through thought leadership, barrier destruction, and the power of influence.

Dominic Mancini

Vice President, Operations

Dominic Mancini brings 12 years of experience working the interfaces between Analytical Development, Process Development, Quality, and Manufacturing Science to OrganaBio. A lifelong learner, Dominic enjoys solving the many scientific and operational challenges presented in the field of cell and gene therapy.

Prior to OrganaBio, Dominic spent 8 years at Bluebird Bio as the company grew from 45 to 1200+ employees and from 1 clinical asset to a robust commercial pipeline. At Bluebird, Dominic initially supported the development and technology transfer of lentiviral vector manufacturing processes. As demand grew for lentiviral process and product characterization, Dominic led the development, qualification, transfer, and validation two commercial release methods. Dominic transitioned back to the Process Development organization to lead the vector manufacturing core team, increasing operational efficiency through a 5S implementation, process schedule intensification, and reverse technology transfer initiative. More recently, Dominic supported the build-out of bluebird’s Manufacturing Science & Technology team followed by the Data Systems & Analytics team, handling late-stage commercial asset support.

Dominic received his Bachelor of Chemical Engineering with Distinction from the University of Delaware. Dominic’s undergraduate research culminated in his thesis on heterologous expression of G-protein coupled receptors in Saccharomyces cerevisiae. After graduation, Dominic was the premier hire of the Zhou Laboratory at Brigham and Women’s hospital in Boston, MA. In three years, Dominic established an animal model of COPD and co-authored several papers with his collaborators in the Pulmonary division.

Christopher B. Goodman

Vice President, Quality & Regulatory Affairs

Christopher B. Goodman is a biopharmaceutical consultant and executive making a global impact in the cellular therapy technology arena. The scope of Christopher’s expertise encompasses Cellular Therapeutic Operations, Quality and Regulatory Affairs, Global Corporate Operations, Scientific Strategic Planning, Scientific R&D Collaborations, and Marketing & Commercialization.

Christopher recently joined OrganaBio as their Vice President of Regulatory Affairs. In this role, Christopher will be helping the company, its clients and partners navigate the complexities of the domestic and international regulatory requirements governing advanced cellular therapy products and manufacturing.

Previously, Christopher held positions with the Association for the Advancement of Blood and Biotherapies (AABB), Virgin Health Bank, Ventana Medical Systems, and Celgene.

While with AABB, he held the positions of Senior Director of New Products and Lead Quality Assessor, auditing both domestic and international organizations to known standards in an effort to promote and ensure patient quality care and manufactured product consistency and standardization within Cellular Therapy, Blood Banking, Transfusion Services, Perioperative and Donor Center industries and operations. He contributed greatly to the work of AABB’s accreditation program providing his deep breadth of knowledge and technical acumen on many committees during his tenure. His pioneering work in the realm of virtual assessments during the COVID pandemic allowed AABB to flex into the planning and execution of this novel approach to the maintenance of accreditation activities during a global travel crisis. His agile thinking and approach to planning provided as minimal disruption as possible to AABB’s customer facilities.

While working with Virgin Health Bank in the State of Qatar and the United Kingdom, Christopher advanced through a series of executive roles. He joined Virgin Health Bank as the Director of Operations, during which time he managed the successful design, and build out of a new state-of-the-art cGMP facility, the first in the Middle East. As Director and Chief Executive Officer, he directed the launch of the first Arab-centric stem cell bank, and strategically guided the organization to enhanced shareholder value and expansion across the Middle East and UK. In these roles, he also oversaw global corporate operations, research collaborations, product portfolio expansion, and regulatory framework.

Christopher managed the Detection and Chemistry Assay Development Group for Ventana Medical Systems, a global leader and innovator of tissue-based diagnostic solutions. In this role, he directed overall program goals, optimized resources, and guided technical and product direction in global regulated environments.

Prior to Ventana Medical Systems, he held the position of Director of Operations for the high-growth Cellular Therapeutics Division of Celgene. As a senior-level scientist and member of the executive team, he directed divisional operations, medical affairs and executed business and scientific strategic planning.

Danielle Smyla

Senior Director, Quality Assurance

Danielle Smyla, M.S., brings 14 years of Quality Assurance and GMP experience in the Biotechnology and Medical Device industries. Ms. Smyla is an established Quality Leader with expertise in the implementation, management and continuous improvement of Quality Management Systems for GMP operations.

Prior to joining OrganaBio, Danielle was a key member of the Quality Management team at Canon BioMedical, where she led the cross-functional development and implementation of their Quality Management System. She also managed a team of Quality Specialists and Sr. Specialists, coaching them in the implementation, management and identification of improvements to quality processes.

Ms. Smyla’s Quality-focused career is complimented by valuable hands-on experience in GMP product manufacturing, as well as R&D laboratory experimentation and formulation work in support of product development.

Danielle has earned a Master’s in Biotechnology from the Johns Hopkins University and a Bachelor of Science in Chemistry from the George Washington University.

Priya Baraniak, Ph.D.

Chief Business Officer

Dr. Baraniak is a proven strategic thinker, problem solver and leader who brings 20 years of expertise in stem cells and tissue engineering, coupled with a keen business acumen, to OrganaBio. Dr. Baraniak has published multiple peer-reviewed papers and book chapters on the use of stem cells and biomaterials in cardiac repair and regeneration and is routinely invited to speak at conferences.

Before joining OrganaBio, Priya was a founding member of RoosterBio and was a vital member of the company’s Leadership Team. At RoosterBio, Priya leveraged her technical expertise to build and rapidly scale the company’s sales and marketing engines in a fast-paced start-up environment, delivering impressive growth in revenue year-over-year. Additionally, in her role as Business Development lead at RoosterBio, Priya structured, negotiated and executed multiple strategic partnerships for aggressive growth of the organization.

Priya’s industry experience includes a role as Senior Director of R&D for Garnet BioTherapeutics, a clinical-stage stem cell-based regenerative medicine company, where Priya led multiple projects on tissue repair and regeneration using mesenchymal stem cell (MSC)-based therapeutics and devices. While at Garnet Bio, Priya also worked on the company’s FDA filings, contributed to drafting and prosecuting the company’s patent portfolio, managed CRO, CMO and industry partner relationships and actively participated in establishing Garnet’s strategic R&D plan, thereby gaining critical insights into business operations across a small organization.

Priya’s scientific training began as an undergraduate student at Duke University, where she earned a Bachelor of Science in Engineering (BSE) from Duke University in 2001 after double majoring in Electrical Engineering and Biomedical Engineering. While at Duke, Priya conducted research in the lab of Dr. Doris A. Taylor on the use of skeletal myoblasts and stem cells for cardiac repair and regeneration. Priya went on to receive her Ph.D. in Bioengineering from the University of Pittsburgh in 2008. She completed her dissertation research in the laboratory of Dr. William R. Wagner working on developing a controlled release biodegradable elastomer for applications in cardiovascular regenerative medicine. In 2008, Priya joined Dr. Todd McDevitt’s lab in the Department of Biomedical Engineering at Georgia Tech and Emory University as a post-doctoral fellow. Her post-doctoral research as an American Heart Association Fellow focused on harnessing the secretome and isolating the extracellular matrix from MSCs and other cell types, including pluripotent stem cells, for cardiac tissue repair and regeneration. Priya co-authored many grants while a post-doc and went on to contribute critical sections to a NIST grant that resulted in the first ever National Cell Manufacturing Consortium in the United States.

Sarah Alter, Ph.D.

Senior Director, Scientific Affairs

Sarah Alter, Ph.D., has 15 years of immunology research experience which includes autoimmunity, cancer, and infectious disease.

Before her position at OrganaBio, Sarah was responsible for leading a team of scientists at Altor Bioscience where she facilitated the advancement of Altor’s technologies. As a Research and Development Manager, Dr. Alter coordinated immunotherapy-focused preclinical and clinical studies and contributed to the progress of Altor’s drug discovery and therapeutic applications.

Sarah received her Doctor of Philosophy from the University of Miami, Miller School of Medicine. She is also a registered Patent Agent, licensed to practice before the United States Patent and Trademark Office. Her work was published in many peer-reviewed journals and presented at national and international business and scientific meetings.

Carlos Carballosa, Ph.D

Director, Scientific Sales

Carlos Carballosa is a biomedical engineer with over 8 years of stem cell research experience with broad expertise in the culture, differentiation, and cryopreservation of adult stem cell populations. Carlos earned his bachelors, masters and doctorate degrees in Biomedical Engineering from the University of Miami, where his research focused on the effects of nicotine and electronic cigarette vapor exposure on the regeneration potential of adult stem cells. In addition to his dissertations, Dr. Carballosa has authored numerous publications related to stem cell biology.

Oscar Robles

Director, Quality Systems

Oscar Robles has over thirty years of experience in pharmaceutical and medical device industries. His main areas of expertise are in Quality Systems, Quality Assurance, Manufacturing Systems Validation, Computerized Systems Validation, implementation of GxP Computerized Systems and ERP Systems such as TrackWise, Electronic Document Management, JDEwards, SAP, and Oracle. Prior to joining OrganaBio, Oscar was a member of the Quality Management team at Apotex – Aveva Drug Delivery Systems for ten years. Oscar has earned a Master’s in Business Administration from Nova Southeastern University and a Bachelor of Science in Electrical Engineering from Florida International University.